语言文学网-学术论文、书评、读后感、读书笔记、读书名言、读书文摘!

语文网-语言文学网-读书-中国古典文学、文学评论、书评、读后感、世界名著、读书笔记、名言、文摘-新都网

从陆谷孙翻译智慧看人工智能的“正道”(2)

http://www.newdu.com 2017-11-16 解放日报 徐英瑾 参加讨论

    然而,对于“符号进路”的机器翻译路径而言,需要编程员预先对大量双语语料对应关系及各个词汇自身的语义框架进行建模。工作的繁琐度就不提了,其不灵活性更是一个致命伤。具体而言,信息再完备的此类系统,也很难对前面提到的“中国排骨”这样古怪的词语进行准确的信息解码。通常状态下,若不对整部小说有一定了解,恐怕就只能被译为“Chineseribs”这样的菜名了。但是,对于现有的翻译系统来说,对整部待译小说进行“宏观把握”,却是一个几乎不可能完成的任务。
    再来看统计学机器翻译路径。它是由所谓“深度学习”系统来实现的。概而言之,“深度学习”是一个升级版的人工神经元网络系统。其基本工作原理是,在亚符号层面上将语义对象解析为一个复杂的特征簇,然后通过神经元网络的多层次加工,从中逐层将高阶语义重新构造出来。照此进路,一个诸如“排骨”这样的词汇,其原始形态只有数学特征、没有语义特征。由于允许系统对语义相似关系作出模糊处理,因而其灵活性显然超过“符号进路”系统。
    不过,与陆先生的翻译智慧相比,“深度学习”网络的火候还差得远。且不提此类系统的运行所需要消耗的大量计算资源,光在一个问题上就完败了:它必须有大量的训练样本,以帮助其在一类源语言词汇与另一类目标语言词汇之间预先搭建起大致的相关性关系簇;然后,它才能够依循成例,摸索出与之比较接近的“跨越方式”。但是,像陆先生那样进行创造性“跨越”的大本领,此类系统还是学不来的。
    这是不是意味着陆先生的翻译智慧,任何机器都无法模仿呢?我当然也不这么悲观。现有的机器翻译进路之所以有问题,与其说是因为超级人工智能不靠谱,还不如说是业内人士太满足于玩弄工程学层面上的“奇技淫巧”了,不爱琢磨学理层面上的抽象问题。
    考虑到这一点,机器翻译就不宜作为一个单独的研究项目“孤军深入”,而应当成为人工感知、类比推理机制等相关领域内的研究成果的衍生产品。这一条新进路,在国际上一般被称为“通用人工智能”。或者说得更通俗一点,按此新进路,人工智能专家与其模仿陆先生的资深翻译能力,还不如先去模仿陆先生咿呀学语时的“通用智力”,然后再求日益精进。此路看似曲折,实际上才是人工智能研究之“正道”。
    (作者为复旦大学哲学学院教授,本栏目由观点版与复旦大学哲学学院合办) (责任编辑:admin)
织梦二维码生成器
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
评论
批评
访谈
名家与书
读书指南
文艺
文坛轶事
文化万象
学术理论