语言文学网-学术论文、书评、读后感、读书笔记、读书名言、读书文摘!

语文网-语言文学网-读书-中国古典文学、文学评论、书评、读后感、世界名著、读书笔记、名言、文摘-新都网

当前位置: 首页 > 读书指南 > 读书文摘 >

摘自《数学:确定性的丧失》

http://www.newdu.com 2017-10-12 中国教育新闻网—中国教 任余 参加讨论

    数学:确定性的丧失
    战争、饥荒和瘟疫能引起悲剧,然而,人类思想的局限性也能引起智力悲剧。本书论及的不幸事件降临在人类最为卓著且无与伦比的成就,对人类的理性精神具有最持久和最深刻的影响——数学的头上。
    换句话说,这本书在非专业层次上探讨数学尊严的兴衰。看到数学现在的宏大规模,日益增多甚至呈繁荣之势的数学活动,每年发表的数以千计的研究论文,对计算机兴趣的迅猛飞涨,以及尤其是在社会科学和生物科学中对定量关系的广泛研究,数学的衰落何从谈起?悲剧存在于何处?要回答这些问题,我们必须首先考虑是什么为数学赢得了巨大的声望和荣誉。
    作为一个独立知识体系的数学起源于古希腊,自它诞生之日起的2000多年来,数学家们一直在追求真理,而且成就辉煌。关于数和几何图形的庞大理论体系为数学提供了一个看来似乎永无休止的确定性前景。
    在数学以外的领域,数学概念及其推论为重大的科学理论提供精髓。尽管通过数学和科学的合作才获得的知识用到了自然定律,但它们看来似乎与绝对的数学真理一样绝对可信,因为天文学、力学、光学、空气动力学中的数学所做的预测与观察和实验相当吻合。因此,数学能牢固把握宇宙的所作所为,能瓦解玄秘并代之以规律和秩序。人类得以趾高气扬地俯瞰他周围的世界,吹嘘自己已经掌握了宇宙的许多秘密(实际上是一系列数学定理)。拉普拉斯的话概括了数学家们一直在不懈地追求真理的信念。他说,牛顿是最幸运的人,因为只有一个宇宙,而他已发现了它的规律。
    数学依赖于一种特殊的方法去达到它惊人而有力的结果,即从不证自明的公理出发进行演绎推理。它的实质是,若公理为真,则可以保证由它演绎出的结论为真。通过应用这些看起来清晰、正确、完美的逻辑,数学家们得出显然是毋庸置疑、无可辩驳的结论。数学的这套方法今天仍然沿用,任何时候,谁想找一个推理的必然性和准确性的例子,一定会想到数学。
    这种数学方法所取得的成功吸引了最伟大的智者,数学已显示了人类理性的能力、根源和力量。所以他们猜测,为什么不能把这种方法用到由权威、风俗、习惯控制的领域,比如在哲学、神学、伦理学、美学及社会科学中去寻求真理呢?人类的推理能力,在数学及自然科学中,是如此的卓有成效,肯定也将成为上述其他领域思想和行为的主宰,为其获得真理的美和美的真理。因此,在称作理性时代的启蒙时代,数学方法甚至加上一些数学概念和定理,用到了人文事务中。
    洞察力最丰富的来源是后者。19世纪的创造,包括令人奇怪的几种几何学和代数学,迫使数学家们极不情愿地勉强承认绝对意义上的数学以及科学中的数学真理并不都是真理。例如,他们发现几种不同的几何学同等地与空间经验相吻合,它们可能都不是真理。显然,自然界的数学设计并不是固有的,或者如果是的话,人类的数学都未必是那个设计的最好诠释。开启真理的钥匙失去了,这一事实是降临到数学头上的第一个不幸事件。
    新的几何学和代数学的诞生使数学家们感受到另一个宇宙的震动。寻求真理的信念使数学家们如醉如痴。总是迫不及待地用严密论证去追求那些虚无缥缈的真理。认识到数学并不是真理的化身动摇了他们产生于数学的那份自信,他们开始重新检验他们的创造。他们失望地发现数学中的逻辑形容枯槁,惨不忍睹。
    事实上,数学已经不合逻辑的发展。其不仅包括错误的证明,推理的漏洞,还有稍加注意就能避免的疏误。这样的大错比比皆是。这种不合逻辑的发展还涉及对概念的不充分理解,无法真正认识逻辑所需要的原理,以及证明的不够严密;就是说,直觉、实证及借助于几何图形的证明取代了逻辑论证。……
    到1930年,数学家已满足于接受几种数学基础的一两个,并且宣称自己的数学证明至少和这些学派的原则相符。但是,灾难再次降临,形式是K.哥德尔的一篇著名论文。哥德尔证明了那几个学派所接受的逻辑原理无法证明数学的一致性。这还不包括论文里其他一些意义重大、影响深远的结果。哥德尔表明,对已取得的成功提出质疑不能不用到非常可疑的逻辑原理。哥德尔定理引起一场巨变。随后的发展带来了更大的麻烦。例如,就连过去极度推崇的、被认为是精密科学方法的公理化——演绎方法看来也是有缺陷的。这些新的发展给数学增加了多种可能的结构,同时也把数学家分成了更多的相异群体。
    数学的当前困境是有许多种数学而不是只有一种。而且由于种种原因每一种都无法使对立学派满意。显然,普遍接受的概念、正确无误的推理体系——1800年时的尊贵数学和那时人的自豪——现在都成了痴心妄想。与未来数学相关的不确定性和可疑,取代了过去的确定性和自满。
    ……
    (选自M.克莱因《数学:确定性的丧失》,李宏魁译,湖南科学技术出版社2007年6月第2版)
    随看随想
    《数学:确定性的丧失》一书,是著名的“第一推动丛书”的一种。这里选录的是该书的引论部分。该书作者M.克莱因(Moyis Klein),是美国纽约大学柯朗数学研究所荣誉教授,被认为是“自从欧几里得建立了现代数学的明确模式以来,比任何人都更好地理解了数学的思想家”(该书编者语)。
    人们一向认为“确定”的数学,事实上已不再确定:这是本书的主旨。这本书,叩击大脑,也深有趣味。
    面对自然、宇宙、世界、天地,面对自己的肉身和心灵,人类是不是应该更多一份虔敬和谦卑?(任余)
     《中国教师报》2015年12月9日第9版 (责任编辑:admin)
织梦二维码生成器
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
评论
批评
访谈
名家与书
读书指南
文艺
文坛轶事
文化万象
学术理论